- Euler beta integral
- Математика: интеграл Эйлера первого рода
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Beta function — This article is about Euler beta function. For other uses, see Beta function (disambiguation). In mathematics, the beta function, also called the Euler integral of the first kind, is a special function defined by for The beta function was studied … Wikipedia
Euler–Mascheroni constant — Euler s constant redirects here. For the base of the natural logarithm, e ≈ 2.718..., see e (mathematical constant). The area of the blue region is equal to the Euler–Mascheroni constant. List of numbers – Irrational and suspected irrational… … Wikipedia
Euler integral — In mathematics, there are two types of Euler integral: # Euler integral of the first kind : the Beta function mathrm{Beta}(x,y)= int 0^1t^{x 1}(1 t)^{y 1},dt =frac{Gamma(x)Gamma(y)}{Gamma(x+y)} # Euler integral of the second kind : the Gamma… … Wikipedia
Integral — This article is about the concept of integrals in calculus. For the set of numbers, see integer. For other uses, see Integral (disambiguation). A definite integral of a function can be represented as the signed area of the region bounded by its… … Wikipedia
Euler number — For other uses, see Euler number (topology) and Eulerian number. Also see e (mathematical constant),Euler number (physics) and Euler–Mascheroni constant. In mathematics, in the area of number theory, the Euler numbers are a sequence En of… … Wikipedia
Función beta — Este artículo trata sobre función beta de Euler. Para otras funciones beta, véase Función beta (desambiguación). Función beta. Representación de la función para valores reales positivos de x e y. En matemáticas, la función beta … Wikipedia Español
Selberg integral — In mathematics the Selberg integral is a generalization of Euler beta function to n dimensions introduced and proven by Atle Selberg (1944). Contents 1 Selberg s integral formula 2 Aomoto s integral formula 3 Mehta s integral … Wikipedia
Barnes integral — In mathematics, a Barnes integral or Mellin–Barnes integral is a contour integral involving a product of gamma functions. They were introduced by Ernest William Barnes (1908, 1910). They are closely related to generalized hypergeometric… … Wikipedia
Nörlund–Rice integral — In mathematics, the Nörlund–Rice integral, sometimes called Rice s method, relates the nth forward difference of a function to a line integral on the complex plane. As such, it commonly appears in the theory of finite differences, and also has… … Wikipedia
Nörlund-Rice integral — In mathematics, the Nörlund Rice integral, sometimes called Rice s method, relates the n th forward difference of a function to a line integral on the complex plane. As such, it commonly appears in the theory of finite differences, and also has… … Wikipedia
Constante de Euler-Mascheroni — La constante de Euler Mascheroni, (también conocida como constante de Euler ) es una constante matemática que aparece principalmente en teoría de números, y se denota con la letra griega minúscula γ (Gamma). Se define como el límite de la… … Wikipedia Español